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Complex impedance and admittance of a 
silver-conducting glass 

AKIRA DOI 
Department of Materials, Nagoya Institute of Technology, Nagoya 466. Japan 

From the analysis of complex impedance and admittance data of (Agl)7~ (Ag4 P207)25 glass, an 
Ag +-ion conductor, it was revealed that the sample can be approximated by a series RC1 
circuit at high temperature, with the capacitor C1 arising from the charge-carrier depleted 
region near the anode which develops as conduction proceeds, and by a parallel RC2 circuit at 
low temperature, with the capacitor C 2 arising from the saturated value for ionic polarization 
of, say, the silver-iodine pairs as well as from the relaxation effect of the Ag + ions for con- 
duction. The C~ and C2 values were found to be almost temperature-independent at peak fre- 
quencies of the distorted semicircles in respective complex planes, with the ratio C~/C 2 as 
large as10 4 . 

1. I n t r o d u c t i o n  
Complex impedance and admittance measurements 
have frequently been made as a useful technique for 
investigating various phenomena which occur when a 
glass is biassed by an a.c. electric field. The purpose of 
this work is to apply this technique to one of the 
Ag+-ion conductors, the (AgI)vs(Ag4P207)25 glass, 
and to obtain further insight into ionic-conduction 
related phenomena in glass. Experimental details have 
been presented elsewhere [1] and will not be given 
here. 

2. Results and discussion 
Suppose the applied field is given by 

E* = E0 exp [--j(~ot - Kr)] (1) 

where 09 is the angular frequency and K the propaga- 
tion constant. In order to describe correctly the phase 
lags of various responses to the stimulus, E*, the 
complex admittance Y* and complex impedance Z* 
should be written as 

Y* = G - j B  G ,B  >~ 0 (2) 

and 

Z* = Zl + jZ2 Zl, Z2 > 0 (3) 

The corresponding complex dielectric constant is, 
then, 

e* = el -t- je2 el, e2 ~> 0 (4) 

Figs 1 and 2 illustrate some of the complex admittance 
data of the glass measured in the frequency range from 
5 to 5 x 105 Hz. As is apparent, the locus of the B-G 
plots with increasing temperatures completes the dis- 
torted semicircle which terminates at the origin. It is 
well known that the minima of B other than the origin, 
which we term "the spikes", correspond to d.c. con- 
ductivities. Fig. 3 shows the Arrhenius plots of ado thus 
determined from the spikes in the complex admittance 
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plane, as well as from the spikes in the complex 
impedance plane, as discussed below. 

The a.c. conductivity, ~r,c, when defined using the 
sample thickness d and the electrode area s, as 

a,~ c = (d/s)G (5) 

was found to decrease from the plateau (+--'ado) at 
frequencies less than that for the spike [1]. This low- 
frequency dispersion was attributed [2] to a decrease in 
the effective field for conduction within a glass bulk by 
the development of the charge-carrier depleted region 
(CDR) near the anode as conduction proceeds. Once 
the CDR is formed, it is,possible that the sample is 
approximated by a series RC~ circuit composed of the 
resistor, R, of the glass bulk and the capacitor, Ct, of 
CDR, as shown in Fig. 4. Provided R and Cl are 
frequency independent, we should find a semicircle in 
the B-G plane which intersects the G axis at the origin 
and at 1/R (=Sadc/d) (Fig. 4c), in partial agreement 
with our observation. The term "partial" means that 
our semicircles are flattened to some extent, with the 
centre of the circle shifted downwards in the fourth 
quadrant. The ratio of the short length to the long 
length of the distorted semicircle, b/a, lies within 
0.72 _+ 0.04. The distortion of this sort would arise 
from the frequency dependences of R and Cl. As CDR 
develops, Z 1 ( = R) is no longer constant, and increases 
with decreasing frequencies, while Z2 (=l/coC1) 
increases below the e) -I dependency by the growing 
values for C1 [1]. Hence, we observe a distorted 
semicircle by different frequency dependences of B 
(=Z2/ (Z  ~ + Z2)) and G ( = Z1 / ( g  2 + Z2)). 

The peak of an ideal semicircle corresponds to the 
angular frequency, coo, at which an equality cocRC1 = 
1 holds. Provided this relation holds true even for the 
distorted semicircles, we can estimate the  values for 
C1. Those thus estimated are found to be almost 
temperature-independent (Table I), except at high 
temperatures where deviation from linearity was 
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found for the Arrhenius plots of ad~ (Fig. 3). The 
charge flowing into the cathode per half-cycle of  0he by 
ionic conduction, is 

q = nadoE/~ (6) 

where E is the r.m.s, value of the applied field. Table 
I shows constant values for q/E, irrespective of the 
temperatures used. If the anode is a totally blocking 
electrode and q is provided by the charge carriers 
within the width r of  CDR, then 

r = eq/n = nadoE/(oo~en) (7) 

where n is the charge carrier density. Hence, it is 
exPected that the width of CDR formed within 
the half-cycle of c~ is almost invariant for varying 
temperatures. 

A dielectric constant of  a capacitor can be evaluated 
from 

C/s = 51eo/r (8) 

if the value of r is known correctly. When 2 x 
10 22 cm -3 (the nominal density of the Ag + ions) is used 
for n, Equation 7 gives an unreasonable value of 
4 x 10 ~2cm for r. Therefore, in order to have a 
reasonable value for r, we must take into account 
the distribution of the charge carriers for conduction 
near the anode which is not so simple and abrupt as 

Figure 1 Complex admittance plots at - 129.7~ (o, O), 
and - 114.5~ (x). For illustrating the absence of a semi- 
circle within the frequency range studied, the data at 
-129.7~ are plotted at two different ordinates. The 
minima of (dis)B, termed "the spikes", correspond to d.c. 
conductivities. 

Equation 7 suggests hut must be a far more slowly 
varying function with depth. 

With decreasing temperatures the complex admit- 
tance plane no longer shows a semicircle, while con- 
comitantly it reveals itself in the complex impedance 
plane (Fig. 5). Figs 6-8 show comparisons of the 
complex impedance and admittance plots at three 
different temperatures. Any semicircle in the complex 
impedance plane which terminates at the origin can be 
approximated by a parallel RC2 circuit (Fig. 9). At the 
peak of  the semicircle the relevant angular frequency, 
~oc, satisfies the relation ~ocRC2 = 1. The spikes in the 
complex impedance plane correspond to d.c. conduc- 
tivities as the spikes in the complex admittance plane 
do, as shown in Fig. 3. 

Those semicircles in the complex impedance plane 
are also flattened to some extent, as the ratio of the 
short to long lengths of  the semicircle indicates (Table 
II). Provided the peak frequency of even a distorted 
semicircle satisfies the relation ~ocRC2 = 1, the C2/s 
values are estimated and are found to be almost tem- 
perature-independent (Table II). For  constant R 
(=d/(sodc)) and C2 (=soslS/d) in the parallel RC2 
circuit, the relation [3] 

(d/s)G ~- -  O ' a c  = O ' d c  (9) 

(el~s)8 = ~0~o (10) 

15 

(d/s) B 
(a-%rfi 1) 

10 

1() 5 . ,, 
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t ,  

z~ 

o o o o o 
a o o 

o o o 
a, o o 

o o 
o o 

# '  o o 

,n. o o 
~ .oo  o 

A ~  ~ 

xx  S 
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5 110 lt5 2()x10 -5 

(d/s) G (~lcrdl) 
Figure 2 Complex admittance plots at -59.9~ (x), 
- -  40.2 ~ C (0)  and - 20.0 ~ C (zx). 
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Figure 3 Arrhenius plots of d.c. conductivity, as determined from 
the spikes in complex admittance (o) and complex impedance (x) 
planes, as well as of peak maximum of dB/s, (dB/s) m, and corres- 
ponding peak frequency f~ (=  me/2~). 

would give an ideal semicircle in the complex 
impedance plane. However, since our glass shows an 
incremental dispersion of G at high frequencies [3], the 
observed semicircle is flattened by a faster lowering 
of Z: (=  B / ( B  2 -Jr G2)) than ZI ( =  G / ( B  2 + G2)).  The 
high-frequency dispersion of  G was attributed [3] to 
the participation of e:, the dielectric loss factor due to 
dielectric relaxation of the charge carriers for conduc- 
tion which is found to be a far more slowly varying 
function of  frequency than the Debye solid. 

Our glass is an Ag + -ion conductor. The relaxation 
time for conduction of the Ag + ions, r, is evaluated 
from [4] 

= (l/v0) exp (H/kT) (11) 

(a) 

(b) 

LU CDR i 8 B 
Z 

C 1 R 

B I 

0<. 2a  ;,1./R G 

Figure 4 As conduction proceeds, the charge-carrier-depleted re- 
gion (CDR) is developed near the anode (a). In this situation, the 
sample can be approximated by the series RC t circuit (b) which in 
the complex admittance plane is represented by a semicircle, with 
the peak at which the angular frequency, co~, satisfies the relation 
o)~RC~ = 1 (c). For real glasses the semicircle is flattened to some 
extent, with a ratio b/a less than unity. 

15x105 

Z2 

10 

x ~  

o o o  o o o  o � 9  

x xx 0% x& 

x x n ~ 1 7 6  ~ o 

5 10 15 20 xl0" 
2'1 (~) 

Figure 5 Complex impedance plots at -129.7~ (A), -132.8~ 
(O), and - 138.1~ (x). 

using 3.0 x 1012 Hz for % the oscillation frequency 
of the Ag + ions [5], and 5.53kcalmol -j for H, the 
activation energy for conduction [1]. The Arrhenius 
plots of RC2 is found to be parallel with r, with the 
activation energy of  5.59kcalmol -I (Fig. 10). It is 
plausible in view of constant values for Ct and C2 that 
the Arrhenius plots of  the time constant RCI also gives 
a parallel line, with the activation energy of 5.66 kcal 
tool l . 

It is suggested from the previous work [3] that, at 
~o~ ~ 1, the dominant contribution to C2 comes from 
s~o, the saturated value for ionic polarization of, say, 
the silver-iodine pairs, and As, the magnitude of 
dielectric dispersion due to charge-carrier motion, 
termed conduction polarization [4], as 

e(~o ~ l/T) = e+o + As/2 (12) 

From the C:/s values listed in Table II and Equation 
8, using d = 0.0604cm in place of r, the et values 
deduced, ~41,  are close to ~ 35 which is the esti- 
mated value from Equation 12. Similarly, C1 would 
arise from conduction polarization of the oppositely 
charged ions (possibly the iodine ions) in CDR, as 
TSPC-TSDC studies of alkali silicate glass [4] suggest. 
Fig. l l shows the dielectric dispersion spectra at 
several high temperatures, illustrating the levelling off 
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Figure 6 Complex impedance and admittance plots at + 36.2 ~ C. 
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Figure 7 Complex impedance and admittance plots at - 9 9 . 9  ~ C. 

of  st with as much as ~ 8 x 10 5 which is 10 4 times 
larger than that for conduction polarization of  the 
Ag + ions. 

Here, use is made of the relation el = dB/(sCOeo). 
Let us discuss the validity of this derivation. Since the 
current precedes the applied voltage by some phase 
angle for both series RC1 and parallel RC2 circuits, the 
complex conductivity in response to an applied field of 
clockwise rotation (Equation 1) should be written as 

G* = 0.1 - ja2 0.1, 0"2 ~ O (13) 

Substitution of Equations 1, 2, 4 and 13 into one of the 
Maxwell equations 

rot H* = (d is )Y 'E* = 0"*E* + eoe*OE*/Ot 

(14) 

gives the universal equations [3] 

(d/s)G = e0s2co + 0.1 (15) 

(d/s)B = e0/~l(.O -]- 0 2 (16) 

x!o+ 
wh>a +~ 
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Figure 8 Complex impedance and admittance plots at - 147.2 ~ C. 

(a) 

C 2 

(b) 

0r 2a ~R Z1 

Figure 9 Parallel RC 2 circuit (a) gives a semicircle in the complex 
impedance plane (b). The angular frequency at the peak, e)o, satis- 
fies the relation oJ~RC 2 = l. For real glasses the semicircle is 
flattened, with the ratio b/a less than unity. 

At high temperatures, where the complex admittance 
plots show the semicircle, the Arrhenius plots of the 
peak maximum of dB/s, (dB/s)m , and the correspond- 
ing peak frequency, f~ (=COc/2rc), are found to be 
almost parallel to that of the d.c. conductivity (Fig. 3). 
With reference to Equation 16, it means that the 
0.2 term is negligible and st is temperature indepen- 
dent at the peak frequencies. For  example, the fre- 
quency dependences of ej (=  dB/(scoeo)), dB/s, and Zt 
as measured at 1.0~ are shown in Fig. 12. Since Z, 
changes little from ado (=7.44 X 10-4f~ 1 cm- i )  at 
frequencies above 1 x 104 Hz, the deteriorating effect 
of CDR or C1 on ionic conduction is negligible in this 
frequency range. Nevertheless, the e~ value as deduced 
from dB/(sCOeo) is already up to 4 x 104. At frequen- 
cies less than fc, el almost levels off. A slight upward 
deflection of  el at lowermost frequencies, as observed 
at high temperatures (Fig. 11), may be due to the 
participation of 0.2. Therefore, within the frequency 
range measured, the contribution of  0- 2 to B seems to 
be negligible and our derivation of  51 from dB/(sCOeo) 
may be valid. 

Fig. 13 shows the normalized plots of G as a func- 
tion of frequency, with the reference frequency fr 
chosen at the dG/s value which is 10% of (0.tic)spike 

( = dGo/s). If  the levelling off of el means the establish- 
ment of an ideal capacitor at CDR, G must converge 

- Z  -6- o 

-E 

-6 6 7 8 
103• 

Figure 10 Arrhenius plots of  RC2, as estimated from the peaks of 
the semicircles in the complex impedance plane using the relation 
~ocRC 2 = 1, as well as o f t ,  the relaxation time for conduction of the 
Ag + ions. 
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Figure l! Dielectric dispersion spectra at several high temperatures. 
(x - 9 9 . 9 ~  o - 5 9 . 9 ~  �9 + 10~ + +36.2~ 

to an absolute zero mho. Therefore, the bending of G 
at lowermost frequencies (Fig. 13) implies the exis- 
tence of the conduction current in CDR, in support 
with the conduction polarization model for the origin 
of C1 rather than with the double-layer model. 

It is noteworthy that, even if the sample can be 
represented by the series RG circuit, the conductivity 
should not be deduced simply from R (=  Z1) using 
the relation a = (d/s)(1/R) or the dielectric con- 
stant from C ( =  1/(o)Z2) ) using the relation e] = 
(d/s)(C/eo). The reason is that, although the admit- 
tance Y* is a linear combination of  two physical 
quantities (the conduction current and the displace- 
ment current in the frequency domain), the impedance 
Z* is defined as a reciprocal of Y*, that is, as a 
measure of resistance to the current flow, so that the 
expression for Z* becomes complex, as 

G 
ZI = R - G 2 + B 2 

d e0~=co + al 
S (g0g2(D + 0-1) 2 -+- (/30,~1(D ~- 0"2) 2 (17) 
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Figure 12 Frequency dependences ofe t , as deduced from dB/(seoeo), 
dB/s, and Z~ at + 1.0~ Arrows indicate positions of dB/s 
maximum. 
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Figure 13 Normalized plots of G as a function of frequency in the 
temperature range from - 6 9 . 8  to + 36.2~ where the reference 
frequency fr is chosen at the frequency at which dG/s is 10% of 

(O-de)spike ( =  dGo/s ). 
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The constancy of C~ and C2 seems, at a first glance, 
to be contradictory to the conduction polarization 
model because, on this model, the magnitude of  pol- 
arization should decrease with increasing tempera- 
tures as 

ne2 22 E 
P = Aee~ - c&T (19) 

where 2 is the jump distance and ~ the number of 
possible jump directions of the charge carriers for 
conduction. In order to meet the requirement for 
constant C~ and C2, therefore, n must change in 
proportion to the temperature. To our knowledge, 
there has previously been no systematic study on the 
temperature-dependence of Ae by the difficulty in 
isolating Ae for C2 from the overlapping contribution 
from C~ or in attaining saturation of  Ae for C1. How- 
ever, several reports [6-9] on the peak magnitude of e2 
(~2(peak) = l ~ / 2  for a system with single relaxation 
time) or of the electric modulus, M 2 (-= ~2/(~32 + g2)), 

suggest an infralinear or negligible dependence of 
them on the reciprocal temperature. Our hypothesis of 
n oc T agrees, at least qualitatively, with the fact [10] 
that, although M 2 ( p e a k  ) is almost constant below Tg 
[7, 9], it decreases even faster than the reciprocal tem- 
perature above Tg. This implies that the overall charge 
carriers become mobile in the molten state and n no 
longer is temperature dependent, except for the effect 
of dilation. The bending down of the Arrhenius plots 
of ado at high temperatures (Fig. 3) suggests an attain- 
ment of saturation for n, by which the pre-exponential 
factor for ado, 

ne 2 }2 Vo 
(aac)O - ~kT (20) 

decreases with an increase in temperature. Rough 
estimate o f  the value for aac at RT gives 

10 3 f~-~ cm-l ,  in fair agreement with the observa- 
tion (Fig. 3). Temperature-independence of (ado)0 is 

754 



found also for the 25 (xNa20 �9 (1 - x)K20)5A1203 �9 
70SIO2 glasses [1 l]. 

3. Conclusion 
In summary, it is concluded that at low temperatures 
the sample can be approximated by a parallel RC2 
circuit, with the capacitance 6'2 as introduced by the 
constant coo due to ionic polarization of, say, the 
silver-iodine pairs, as well as by the relaxation process 
of the Ag + ions for conduction. At high temperatures, 
the development of CDR near the anode affords the 
sample to be approximated by a series RC1 circuit, 
with CL as arising from CDR. Because of the very 
narrow width and therefore very large effective field of 
CDR, the C1 values are found to be more than 104 

times larger than those for 6"2. The almost tem- 
perature independence of  C1 and C2 suggest that, at 
least in ion-conducting glasses, n would increase 
linearly with the temperature. 
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